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Abstract

A two-dimensional MHD free convection heat and mass transfer flow of viscous,

incompressible and electrically conducting fluid past a vertical flat plate embedded in

porous medium in the presence of hall current under the influence of uniform

magnetic field applied normal to the flow is studied analytically. In this research

work, we make the governing equations dimensionless by usual non-dimensional

variables and we obtained a set of ordinary differential equations. Then these

obtained ordinary differential equations are solved analytically by using perturbation

technique. The expressions for velocity field, temperature distribution, concentration

field, skin friction, the rate of heat transfer and the rate of mass transfer are derived.

Finally the results are discussed in detailed with the help of graphs and tables to

observe the effect of different parameters like Magnetic parameter (M), radiation

parameter (F), Grashof number (Gr), modified Grashof number (Gm), Prandtl

number (Pr), permeability parameter (k), Eckert number (Ec) and the chemical

reaction parameter (Kc).



6



7

Table of Contents

Acknowledgement 3

Abstract 5

Table of Contents 7

List of Figures 9

List of Tables 13

Nomenclature 15

Chapter 1 17

Introduction 17

Chapter 2 21

Some Available Information 21

2.1 Magneto hydrodynamics (MHD) 21

2.2 Flow 23

2.2.1 Some Important Types of Flow 23

2.3 Fluid 24

2.3.1 Some Important Types of Fluid 24

2.4 Free Convection 25

2.5 MHD and Heat Transfer 26

2.6 Heat and Mass transfer 27

2.7 Porous Medium 27

2.8 Viscosity 28

2.9 Newton’s Law of Viscosity 29

2.10 Body and Surface Forces 30

2.11 Strain 31

2.12 Hall Current 31

2.13 Some Definitions 32



8

Schmidt Number (Sc) 32

Grashof Number (Gr) 32

Modified Grashof Number (Gm) 32

Magnetic Parameter (M) 32

Prandtl Number (Pr) 33

Eckert Number (Ec) 33

Shear Stress ( ) 34

Nusselt Number (Nu) 34

Sherwood Number (Sh) 34

Chapter 3 35

Governing Equations and Solution Procedure 35

3.1 Governing Equations 35

3.2 Calculation Technique 36

3.3 Formulation of the Problem 37

3.4 Method of Solution 40

Chapter 4 51

Results and Discussion 51

4.1 Velocity Profiles 52

4.2 Temperature Distributions 59

4.3 Concentration Distributions 61

4.4 Comparison 63

4.5 Skin-friction ( ), Nusselt number (Nu) and Sherwood number(Sh) 73

Chapter 5 75

Conclusion 75

References 77

Appendix 81



9

List of Figures

Figure 2.9.1 Physical configuration of viscosity 29

Figure 3.1.1 The physical co-ordinate system 35

Figure 4.1.1 Variation of velocity profiles u for different values of magnetic
parameter M where Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0,
k=0.5 and Ec=0.01 against y. 54

Figure 4.1.2 Variation of velocity profiles u for different values of hall parameter m
where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and
Ec=0.01 against y. 54

Figure 4.1.3 Variation of velocity profiles u for different values of chemical reaction
parameter Kc where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0, k=0.5 and Ec=0.01 against y. 55

Figure 4.1.4 Variation of velocity profiles u for different values of permeability
parameter k where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2
and Ec=0.01 against y. 55

Figure 4.1.5 Variation of velocity profiles u for different values of radiation
parameter F where M=3.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5
and Ec=0.01 against y. 56

Figure 4.1.6 Variation of velocity profiles u for different values of Grashof number
Gr where M=3.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5 and
Ec=0.01 against y. 56

Figure 4.1.7 Variation of velocity profiles u for different values of modified Grashof
number Gm where M=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5
and Ec=0.01 against y. 57

Figure 4.1.8 Variation of velocity profiles u for different values of Schmidt number
Sc where M=3.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2, k=0.5 and
Ec=0.01 against y. 57



10

Figure 4.1.9 Variation of velocity profiles u for different values of Prandtl number
Pr where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and
Ec=0.01 against y. 58

Figure 4.1.10 Variation of velocity profiles u for different values of Eckert number
Ec where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and
Pr=0.71 against y. 58

Figure 4.2.1 Variation of temperature profiles for different values of radiation
parameter F where M=3.0, Gr=6.0, Gm =3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2,
k=0.5 and Ec=0.01 against y. 60

Figure 4.2.2 Variation of temperature profiles for different values of Prandtl
number Pr where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5
and Ec=0.01 against y. 60

Figure 4.2.3 Variation of temperature profiles u for different values of Eckert
number Ec where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5
and Pr=0.71 against y. 61

Figure 4.3.1 Variation of concentration profiles for different values of chemical
reaction parameter Kc where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Sc=0.22, Pr=0.71,
m=2, k=0.5 and Ec=0.01 against y. 62

Figure 4.3.2 Variation of concentration profiles for different values of Schmidt
number Sc where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Pr=0.71, m=2, k=0.5
and Ec=0.01 against y. 62

Figure 4.4.1 Variation of velocity profiles u for different values of hall parameter m
where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and
Ec=0.01 against y. 64

Figure 4.4.2 Variation of velocity profiles u for different values of hall parameter m
where M=0.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and
Ec=0.01 against y. 64

Figure 4.4.3 Variation of velocity profiles u for different values of chemical reaction
parameter Kc where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0, k=0.5 and Ec=0.01 against y. 65



11

Figure 4.4.4 Variation of velocity profiles u for different values of chemical reaction
parameter Kc where M=0.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0, k=0.5 and Ec=0.01 against y. 65

Figure 4.4.5 Variation of velocity profiles u for different values of permeability
parameter k where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0 and Ec=0.01 against y. 66

Figure 4.4.6 Variation of velocity profiles u for different values of permeability
parameter k where M=0.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0 and Ec=0.01 against y. 66

Figure 4.4.7 Variation of velocity profiles u for different values of radiation
parameter F where M=3.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0,
k=0.5 and Ec=0.01 against y. 67

Figure 4.4.8 Variation of velocity profiles u for different values of radiation
parameter F where M=0.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0,
k=0.5 and Ec=0.01 against y. 67

Figure 4.4.9 Variation of velocity profiles u for different values of Grashof number
Gr where M=3.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and
Ec=0.01 against y. 68

Figure 4.4.10 Variation of velocity profiles u for different values of Grashof number
Gr where M=0.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and
Ec=0.01 against y. 68

Figure 4.4.11 Variation of velocity profiles u for different values of modified
Grashof number Gm where M=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0, k=0.5 and Ec=0.01 against y. 69

Figure 4.4.12 Variation of velocity profiles u for different values of modified
Grashof number Gm where M=0.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71,
m=2.0, k=0.5 and Ec=0.01 against y. 69

Figure 4.4.13 Variation of velocity profiles u for different values of Schmidt number
Sc where M=3.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2.0, k=0.5 and
Ec=0.01 against y. 70



12

Figure 4.4.14 Variation of velocity profiles u for different values of Schmidt number
Sc where M=0.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2.0, k=0.5 and
Ec=0.01 against y. 70

Figure 4.4.15 Variation of velocity profiles u for different values of Prandtl number
Pr where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and
Ec=0.01 against y. 71

Figure 4.4.16 Variation of velocity profiles u for different values of Prandtl number
Pr where M=0.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and
Ec=0.01 against y. 71

Figure 4.4.17 Variation of velocity profiles u for different values of Eckert number
Ec where M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and
Pr=0.71 against y. 72

Figure 4.4.18 Variation of velocity profiles u for

different values of Eckert number Ec where M=0.0,

Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0,

k=0.5 and Pr=0.71 against y. 72



13

List of Tables

Table 4.5.1 Numerical values of Skin-Friction ( ) 73

Table 4.5.2 Numerical values of the rate of Heat Transfer (Nu) 74

Table 4.5.3 Numerical values of the rate of Mass Transfer (Sh) 74



14



15

Nomenclature

x Coordinate axis along to the plate
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Chapter 1

Introduction

Magneto-hydrodynamics (MHD) is the science which deals with the motion of a

highly conduction fluid in the presence of magnetic field. The motion of conducting

fluid across the magnetic field on these currents which change the magnetic field and

the action of the magnetic field on these currents gives rise to mechanical forces

which modify the flow of the fluid. The field of Magneto-hydrodynamic (MHD) was

initiated by Hannes Alfven (1955), for which he received the Nobel Prize in physics

in 1970. It is the branch of continuum mechanics which deals with the flow of

electrically conducting fluids in electric and magnetic fields. Probably the largest

advances towards an understanding of such phenomena come from the field of

astrophysics. It has long been suspected that most of the matter in the universe is in

the plasma or highly ionized gaseous state and much of the basic knowledge in the

area of electromagnetic fluid dynamics evolved from these studies. As a branch of

plasma physics the field of Magneto-hydrodynamics consists of the study of a

continuous, electrically conducting fluid under the influence of electromagnetic

fields. Originally, MHD included only the study of strictly incompressible fluid but

today the terminology is applied to studies of partially ionized gases as well. Other

names have been suggested such as magneto fluid-mechanics or Magneto

hydrodynamics but original nomenclature has persisted. The essential requirement for

problems to be analyzed under the laws of MHD is that the continuum approach be

applicable. Many natural phenomena and engineering problems are worth being

subjected to an MHD analysis. Furthermore, Magneto-hydrodynamic has attracted

the attention of a large number of scholars due to its diverse applications. In

engineering it finds its application in MHD pumps, MHD bearings etc. The principal

MHD effects were first demonstrated in the experiments of Faraday and Ritchie.
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Faraday carried out experiments with the flow of mercury in glass tubes placed

between poles of a magnet and discovered that a voltage was induced across the tube

due to the motion of the mercury across the magnetic fields, perpendicular to the

direction of flow and to the magnetic field. Soundalgekar and Takhar [1] first, studied

the effect of radiation on the natural convection flow of a gas past a semi-infinite

plate using the Cogly-Vincentine-Gilles equilibrium model. For the same gas Takhar

et al. [2] investigated the effects of radiation on the MHD free convection flow past a

semi-infinite vertical plate. Later Hossain et al. [3] studied the effect of radiation on

free convection from a porous vertical plate. Recently the thermal radiation effects on

unsteady free convective flow of a viscous incompressible flow past an exponentially

accelerated infinite vertical plate with variable temperature and uniform mass

diffusion has been studies by Muthucummaraswamy and Vislakshi [4].

The combined effect of viscous dissipation, Joule heating, transpiration, heat source,

thermal diffusion and Hall current on the hydro-Magnetic free convection and mass

transfer flow of an electrically, viscous, homogeneous, incompressible fluid past an

infinite vertical porous plate are discussed by Singh et al. [5]. Singh [6] has also

studied the effects of mass transfer on MHD free convection flow of a viscous fluid

through a vertical channel walls.

The problem of convection heat transfer in a porous media is a topic of rapidly

growing interest due to its applications to geophysics, geothermal reservoirs, thermal

insulation engineering, exploration of petroleum and gas fields, water movements in

geothermal reservoirs etc. Soundalgekar [7] obtained approximate solutions for the

two-dimensional flow of an incompressible, viscous fluid past an infinite vertical

porous plate with constant suction normal to the plate. Murali et al. [8] examined the

thermal radiation effect on unsteady magneto hydrodynamic flow past a vertical

porous plate with variable suction. Damala et al. [9] make a study on the effect of the

steady two-dimensional free convection heat and mass transfer flow electrically

conducting and chemically reacting fluid through a porous medium bounded by a
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vertical infinite surface with constant suction velocity and constant heat flux in the

presence of a uniform magnetic field is presented. The effects of chemical reaction

and radiation absorption have been discussed on unsteady MHD free convection heat

and mass transfer flow on a viscous, incompressible, electrically conducting fluid

past a semi-infinite inclined porous plate, moving with a uniform velocity are

discussed in Sudersan et al. [10]. An analytical solution for unsteady free convection

in porous media has been studied by Magyari et al. [11].

Muthucumaraswamy and Janakiraman [12] studied MHD and radiation effects on

moving isothermal vertical plate with variable mass diffusion. An exact solution to

one dimensional unsteady natural convection flow past an infinite vertical accelerated

plate, immersed in a viscous thermally stratified fluid is investigated by Rudra and

Bhaben [13]. Tasawar et al. [14] investigated the influence of radiation on magneto

hydrodynamic (MHD) and mass transfer flow over a porous stretching sheet.

Muthucummaraswamy et al. [15] presented an exact analysis of rotation effects on

unsteady flow of an incompressible and electrically conducting fluid past uniformly

accelerated infinite vertical plate, under the action of electrically conducting fluid

past a uniformly accelerated infinite vertical plate, under the action of transversely

applied magnetic field. An analytical study is performed to examine the effects of

temperature dependent heat source on the unsteady free convection and mass transfer

flow of an elasto- viscous fluid past an exponentially accelerated infinite vertical

plate in the presence of magnetic field through porous medium by Rajesh [16].

Suneetha et al. [17] investigated thermal radiation effects on MHD flow past an

impulsively started vertical plate in the presence of heat source/ sink by taking into

account the heat due to viscous dissipation. The governing boundary layer equations

of the flow field are solved by an implicit finite difference method of Crank

Nicholson type. Effects on boundary layer flow and heat transfer of a fluid with

variable viscosity along a symmetric wedge is presented here by Mukhopadhyay

[18]. Rajput and Surendra [19] studied the MHD flow past an impulsively started

vertical plate with variable temperature and mass diffusion. Theoretical solution of
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unsteady flow past an uniformly accelerated infinite vertical plate has been presented

Muthucumaraswamy et al. [20] in the presence of variable temperature and uniform

mass diffusion. Rajesh [21] discussed the effect of a uniform transverse magnetic

field on the free convection and mass- transform flow of an electrically- conducting

fluid past an exponentially accelerated infinite vertical plate through a porous

medium. Sing et al. [22] studied the two dimensional free convection and mass

transfer flow of an incompressible viscous and a continuously moving infinite

vertical porous plate in the presence of heat source, thermal diffusion, large suction

and under the influence of uniform magnetic field applied normal to the flow is

studied and perturbation technique is used to solve the governing equation Mehmood

and Ali [23] studied the effect of the wall slip on velocity field. By Rajesh and Vijaya

[24] an analytical study is performed to study the effects of thermal radiation on

unsteady free convection flow past an exponentially accelerated infinite vertical plate

with mass transfer in the presence of magnetic field.

In my present work, I study about the effects of thermal radiation and chemical

reaction on mass transfer on unsteady free convection flow past an exponentially

accelerated infinite vertical plate through porous medium in the presence of magnetic

hall current. The dimensionless governing equations are reduced to a set of ordinary

differential equation. Then I solve these equations with the help of transformed

boundary conditions.
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Chapter 2

Some Available Information

2.1 Magneto hydrodynamics (MHD)

Magneto hydrodynamics (MHD) is a branch of magneto fluid dynamics i.e.

continuum mechanics, which deals with the flow of electrically conducting fluids in

electric and magnetic fields. The largest advance towards an understanding of such

phenomena probably comes from the field of astrophysics. It has long been suspected

that most of the matter in the universe is in the plasma or high ionized gaseous state

and much of the basic knowledge in the area of electromagnetic field dynamics

evolved from these studies.

The fluid of Magneto hydrodynamics consists of the study of a continuous,

electrically conducting fluid under the influence of electromagnetic fields, as a

branch of plasma physics. Originally, MHD included only the study of strictly

incompressible fluid but today the terminology is applied to studies of partially

ionized gases as well as the other names have been suggested, such as magneto-fluid-

mechanics or magneto-aero-dynamics, but original nomenclature has persisted. The

essential requirement for problems to be analyzed under the law of MHD is that the

continuum approach be applicable.

There are many natural phenomena and engineering problems are susceptible to

MHD analysis. It is useful in astrophysics because much of the universe is filled with

widely spaced charged particles and permeated by magnetic fields and so the

continuum assumption becomes applicable. Geophysicists encounter MHD

phenomena in the interactions of conducting fluid and magnetic fields that are present

in and around heavenly bodies. Engineers employ MHD principles in the design of

heat exchangers, pumps and flow meters, in space vehicle propulsion, control and re-
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entry problem, in designing communications and radar system, in creating novel

power generating systems and in developing confinement schemes for controlled

fusion.

The most important application of MHD is in the generation of electrical power with

the flow of an electrically conducting fluid through a transverse magnetic field.

Recently, experiments with ionized gases have been performed with the hope of

producing power on a large scale in stationary plants with large magnetic fields.

Cryogenic and superconducting magnets are required to produce these very large

magnetic fields. Generation of MHD power on a smaller scale is of interest for space

applications.

Generally it is known that, several intermediate transformations are necessary to

convert the heat energy into electricity. Each of these steps means a loss of energy.

This naturally limits the overall efficiency, reliability and compactness of the

conversion process. Methods for direct conversion to energy are now increasingly

receiving attention. Of these, the fuel cell converts the chemical energy of fuel

directly into electrical energy, fusion energy utilizes the energy released when two

hydrogen nuclei fuse into a heavier one, and thermo electrical power generation uses

a thermocouple. Magneto hydrodynamics power generation is another important new

process that is receiving worldwide attention.

In the experiment of Farady (1832), the principal MHD effects were first

demonstrated. He discovered that a voltage was induced across the tube due to the

motion of the mercury across the magnetic fields, perpendicular to the direction of

flow and to the magnetic field by the experiment of the flow of mercury in glass

tubes placed between poles of a magnet. Farady (1832), also suggested that electrical

power could be generated in a load circuit by the interaction of a following

conducting fluid and a magnetic field.

Alfven (1942) discovered MHD waves in the sun. These waves are produced by

disturbances which propagate simultaneously in the conducting fluid and the
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magnetic field. The analogy that explains the generation of an Alfven wave is that of

a harp string plucked while submerged in a fluid. The string provides elastic force

and the fluid provides inertia force and they combine to propagate a perturbing wave

through the fluid and string.

In summary, MHD phenomena result from the mutual effect of a magnetic field and

conducting fluid flowing across it. Thus an electromagnetic force is produced in a

fluid flowing across a transverse magnetic field and the resulting current and

magnetic field combine to produce a force that resists the fluid’s motion. The current

also generates its own magnetic field which distorts the original magnetic field. An

opposing or pumping force on the fluid can be produced by applying an electric field

perpendicularly to the magnetic field. Disturbance in either the magnetic field or the

fluid can propagate in both to produce MHD waves as well as upstream and

downstream wave phenomena. The science of magneto hydrodynamics is the detailed

study of these phenomena, which occur in nature and are produced in engineering

devices.

2.2 Flow

Matter exhibits deformation under the action of forces. It is flow if the deformation

continuously increases without limit under the action of forces, however small.

2.2.1 Some Important Types of Flow

Steady and Unsteady Flow

A flow in which properties and conditions (say, P) associated with the motion of the

fluid are independent of the time so that the flow pattern remains unchanged with the

time is said to be steady. Mathematically we may write .0
t

P Here P may be

velocity, density, pressure, temperature etc.

On the other hand a flow in which properties and conditions associated with the

motion of the fluid depend on time so that flow pattern varies with time is said to be

unsteady
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In unsteady flow 0.
P

t

Uniform and Non-uniform Flow

A flow, in which the fluid particle possesses equal velocities at each section of the

channel or pipe is called uniform flow. On the other hand a flow in which the fluid

particles possess different velocities at each section of the channel or pipe is called

non-uniform flow. These terms are usually used in connection with flow in channels.

2.3 Fluid

Fluid meant a substance that flows. It is an aggregate of particles which yields to the

slightest effort made to separate from each other, if it be continued long enough.

2.3.1 Some Important Types of Fluid

Compressible and Incompressible Fluid

A compressible fluid is one in which the fluid density changes when it is subjected to

high pressure-gradients. For gasses, changes in density are accompanied by changes

in temperature. A fluid is said to be incompressible if it requires a large variation in

pressure to produce some appreciable variation in density.

In our day to day life in many cases the changes in pressure and temperature are

sufficiently small that the changes in density are negligible. In that cases the flow are

modeled as incompressible. Incompressibility is expressed by saying that the density

ρ of a fluid parcel does not change as it moves in the flow field i.e. incompressible

means that their volume do not change when the pressure changes or the density of

every particle of a fluid remains constant following the motion. Although all known

liquids are compressible but for the practical purposes they are regarded as

incompressible fluids.

Mathematically, 0
D

Dt

ρ
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Viscous and Non-viscous fluid

An infinitesimal fluid element is acted upon by two of types of forces, namely, body

forces and surface forces. The former is a type of force which is proportional to the

mass or possibly the volume of the body on which it acts while the later is one which

acts on a surface element and is proportional to the surface area.

Suppose that the fluid element be enclosed by the surface S. Let P be an arbitrary

point of S and dS be the surface element around P. Then the surface force on dS is not

in general in the direction of normal at P to dS. Hence the force may be resolved into

components, one normal and other tangential to the area dS. The normal force per

unit area is said to be the normal stress or pressure while the tangential force per unit

area is said to be the shearing stress. A fluid is said to be viscous when normal as

well as shearing stresses exist. On the other hand, a fluid is said to be inviscous when

it does not exert any shearing stress, whether at rest or in motion. Due to shearing

stress a viscous fluid produces resistance to the body moving through it as well as

between the particles of the fluid itself. For example, water and air are treated

inviscous fluids whereas syrup and heavy oil are treated as viscous fluid.

2.4 Free Convection

In the studies related to heat transfer, considerable effort has been directed towards

the convective mode, in which the relative motion of the fluid provides an additional

mechanism for the transfer of the energy and material, the latter being a more

important consideration in case where mass transfer, due to a concentration

difference occurs. Convection is inevitable coupled with the conductive mechanism,

although the fluid motion modifies the transport process, the eventual transfer of

energy from one fluid to another in its neighborhood is though condition. Also at the

surface, the process is predominantly that of condition because the relative fluid

motion is brought to zero at the surface. A study of the convective heat transfer

therefore involves the mechanism of conduction and sometimes those of radioactive

process as well, coupled with those of fluid flow. This makes the study of this mode
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of heat or mass transfer very complex, although its importance in technology and in

nature can hardly be eager. In the general case of thermal boundary layers, the

velocity field and the temperature field manually interact, which means that the

temperature distribution depends on the velocity distribution. Conversely, the

velocity distribution depends on the temperature distribution. In the special case

when buoyancy forces may be disregarded, and when properties of the fluid may

assumed to be independent of temperature, mutual interaction cases, and the velocity

field no longer depends on the temperature field, although the converse dependence

of the temperature field on the velocity field will still persists. This happens to large

velocities (large Reynolds Number) and small temperature differences, such flows

being termed forced. The process of heat transfer in such flow is described as forced

convection. Flows in which buoyancy are dominant are called natural, the respective

heat transfer being known as natural convection. This case occurs at every small

velocities of motion in presence of large temperature difference.

2.5 MHD and Heat Transfer

With the advent of hypersonic flight, the field of MHD, as define above, which has

attracted the interest of aero dynamics and associated largely with liquid metal

pumping. It is possible to alter the flow and the heat transfer around high velocity

vehicles provided that the air is sufficiently ionized. Furthermore, the invention of

high temperature facilities such as the shock tube plasma jet has provided laboratory

source of following ionized gas, which provided an insentive for the study of plasma

accelerators and generators. As a result of this, many of the classical problems of

fluid mechanics have been reinvestigated. Some of these analyses awake out of the

natural tendency of science to search a new subject. In this case it was the academic

problem of solving the equations of fluid mechanics with a new body force and

another source of dissipation in the energy equation. Some time there were no

practical applications for these results. As for example, natural convection MHD

flows have been of interest to the engineering community only since the
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investigations, directly applicable to the problems in geophysics and astrophysics.

But it was in the field of aerodynamic heating that the largest interest was awaked.

2.6 Heat and Mass transfer

Combined heat and mass transfer problems are of importance in many processes and

have therefore received a considerable amount of attention. In many mass transfer

processes, heat transfer considerations arise owing to chemical reaction and are often

due to the natural of the process. In process such as drying, evaporation at the surface

water, energy transfer in a wet cooling tower and the flow in a desert cooler, the

interest lies in the determination of the total energy transfer, although in process such

as drying, the interest lies mainly in the overall mass transfer for moisture removal.

Nature convection processes involving the combined mechanisms are also

encountered in many natural processes, such as evaporation, condensation and

agricultural drying, in many mixtures in the absence of an externally induced flow

and many chemical processing systems. In many processes such as the curing of the

plastic, cleaning and chemical processing of materials relevant to the manufacture of

printed circuitry, manufacture of pulp insulated cables etc. the combined buoyancy

mechanisms arise and the total energy and the material transfer resulting from the

combined mechanisms has to be determined.

2.7 Porous Medium

A porous medium (or a porous material) is a material containing pores (voids). The

skeletal portion of the material is often called the "matrix" or "frame". The pores are

typically filled with a fluid (liquid or gas). The skeletal material is usually a solid but

structures like foams are often also usefully analyzed using concept of porous media.

A porous medium is most often characterized by its porosity. Other properties of the

medium (e.g., permeability, strength, electrical) can sometimes be derived from the

respective properties of its constituents (solid matrix and fluid) and the media

porosity and pores structure, but such a derivation is usually complex. Even the

concept of porosity is only straight forward for a poroelastic medium.
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Often both the solid matrix and the pore network (also known as the pore space) are

continuous, so as to form two interpenetrating continua such as in a sponge.

However, there is also a concept of closed porosity and effective porosity, i.e., the

pore space accessible to flow.

Many natural substances such as rocks and soil (e.g., aquifers, petroleum reservoirs),

zealots, biological tissues (e.g. bones, wood, cork), and manmade materials such as

cements and ceramics can be considered as porous media. Many of their important

properties can only be rationalized by considering them to be porous media.

The concept of porous media is used in many areas of applied science and

engineering: filtration, mechanics (acoustics, geomechanics, soil mechanics, rock

mechanics), engineering (petroleum engineering, bio-remediation, construction

engineering), geosciences (hydrogeology, petroleumgeology, geophysics), biology

and biophysics, material science, etc. Fluid flow through porous media is a subject of

most common interest and has emerged a separate field of study. The study of more

general behavior of porous media involving deformation of the solid frame is called

poromechanics.

2.8 Viscosity

Viscosity is one kind of property of a real fluid which generates shear stress between

two fluid elements. An infinitesimal fluid element is acted upon by two types of

forces, namely body forces and surface forces.

Let P be an arbitrary point of S and ds be the surface element around P. Then the

surface force on ds is in general not in the direction of normal at P to ds. Hence the

force may be resolved into two components, one normal and other tangential to the

area ds. The normal force per unit area is said to be the normal stress or pressure

while the tangential force per unit area is said to be the shearing stress.

We know that the flow of water and oil is much easier than syrup and heavy oil. This

illustrates the existence of a property in the fluid, which controls its rate of flow. This

property of fluids is said to be viscosity or internal friction.
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A fluid is said to be viscous when normal stress as well as shearing stress exist,

otherwise it is called inviscid fluid.

2.9 Newton’s Law of Viscosity

A relationship between the shear stress and the velocity field was first stated by

Newton. He concluded that the internal friction between two adjacent fluid particles

should be independent of the normal pressure between them but proportional to the

difference in their velocities.

Consider a layer between two parallel plates lying at a distance y0 from each other.

Let the lower plate be fixed, while the upper is moving with a velocity u0 uniformly

and parallel to the lower one. A resistance F is experienced, and to a first

approximation is given by the formula

0
0

0

U
F A

Y
μ (2.9.1)

where, A0=Area of upper plate.

µ =Constant of proportionality which is called the coefficient of viscosity or the

coefficient of dynamic viscosity.

The real fluids have no velocity at the wall for this reason they cannot slip at the

boundary wall. This is known as no slip condition.

Since there is no slip on the wall for real fluids, the velocity u of a layer at a distance

y from the lower plate is given by

u=U0

u

y
Y0

X
O

Y

Figure 2.9.1 Physical configuration of viscosity
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0
0

0 0

so that
Uy u

u U
Y Y y

(2.9.2)

So from equations (2.9.1) and (2.9.2) we get,

0

u
F A

y
μ

0

F u

A y
μ

u
T

y
μ (2.9.3)

where, T =F/A0 is the friction or tangential force per unit area or the shear stress.

u/y=velocity gradient.

du/dy = differential form of velocity gradient.

Then equation (2.9.3) becomes

du
T

dy
μ (2.9.4)

This is known as the Newton’s law of viscosity. Equation (2.9.4) can be regarded as

the definition of viscosity.

Fluids which obey Newton’s law of viscosity are known as Newtonian fluids. For

example water, air and mercury are all Newtonian fluids.

Fluids which do not obey Newton’s law of viscosity are known as non-Newtonian

fluids. The fluids in which the shear stress is not proportional to the velocity gradient

are called non-Newtonian fluids. For example paints, coal tar and polymer solutions

are all non-Newtonian fluids.

2.10 Body and Surface Forces

There are two types of forces acting on a fluid element. They are body forces and

surface forces. The body forces are distributed throughout the volume of the body

and these are usually expressed as ‘force per unit mass of the element’. For examples



31

gravity and inertia forces. Moreover such forces may arise from other physical reason

also such as electric and magnetic.

Surface forces are due to the action of surrounding fluid on the element under

consideration through direct contact. Thus it is a boundary or surface action. These

forces are expressed as ‘force per unit surface area of the element’.

2.11 Strain

Strain may be defined as a non-dimensional deformation which measures the change

of relative positions of the parts of a body under any cause. Strain can be divided into

the two steps. They are normal strain and shearing strain.

The ratio of the change in length to the original length of a linear element is known as

the normal strain.

It is measured in terms of the change in the angle between two linear elements from

the unstrained state to the strained state.

2.12 Hall Current

In the case of an electrically conducting rotating gas at low pressure, there has an

interaction of the magnetic field with the electric field of both the electrons and the

ionized atoms of the gas. If the magnetic field is perpendicular to the electric field, a

current is induced in the conductive rotating gas whose direction is perpendicular to

the both the electric field and the magnetic field. This current is called Hall current

and is induced by a phenomenon known as Hall Effect.

The Hall effect is the production of a voltage difference (the Hall voltage) across an

electrical conductor, transverse to an electric current in the conductor and a magnetic

field perpendicular to the current. The Hall effect was discovered in 1879 by Edwin

Herbert Hall while he was working on his doctoral degree Johns Hopkins University

in Baltimore, Maryland. His measurements of the tiny effect produced in the

apparatus he was an experimental tour de force, accomplished 18 years before the

electrons was discovered.
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The Hall coefficient is defined as the ratio of the induced electric field to the product

of the current density and the applied magnetic field. It is a characteristic of the

material from which the conductor is made, since its value depends on the type,

number, and properties of the charge carries that constitute the current. The Hall

effect in an ionized gas (plasma) is significantly different from the Hall effect in

solids (where the Hall parameter is always very inferior to unity).

Mathematically, Hall current 0,e e e
e

eB
m w t w

m

where we is electronic frequency, e is charge of electron, B0 is magnetic induction, me

is mass of electron and te is electronic collision time

2.13 Some Definitions

Schmidt Number (Sc)

This the ratio of the viscous diffusivity to the chemical molecular diffusivity and is

defined as

Viscous diffusivity

Chemical molecular diffusivity
Sc

D

υ

Grashof Number (Gr)

This is denoted by Gr and defined as 3
0

wg T T
Gr

v

βυ
and is a measure of the

relative importance of the buoyancy forces and viscous forces.

Modified Grashof Number (Gm)

This is denoted by Gm and defined as 3
0

Wg C C
Gm

v

βυ

Magnetic Parameter (M)

This is obtained from the ratio of the magnetic force to the inertia force and is defined

as
2

0
2

0

Magnetic force

Inertia force

B
M

v

σ υ
ρ
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Prandtl Number (Pr)

The Prandrtl number is the ratio of kinematic viscosity to thermal diffusivity and may

be written as follows

Kinematic viscosity

Thermaldiffusivity
p

p

C
Pr

C

μυ
κ κ

ρ

where Cp is the specific heat at constant pressure and is the thermal conductivity.

The value of μυ
ρ

shows the effect of viscosity of the fluid. The smaller the

value of υ is, the narrower is the region which is affected by viscosity and which

is known as the boundary layer region when is very small. The value of
pC

κ
ρ

shows the thermal diffusivity due to heat conduction. The smaller the value of

pC

κ
ρ

is, the narrower is the region which is affected by the heat conduction and

which is known as thermal boundary layer when
pC

κ
ρ

is small. Thus the Prandtl

number shows the relative importance of heat conduction and viscosity of a fluid.

Evidently, the value of Pr varies from fluid to fluid. At 200C the value of Pr for air is

0.71 (approx), for water it is 7.0(approx), similarly for mercury it is 0.044 (approx)

but for high viscous fluid it may be very large for example at 200C the value of Pr is

7250(approx).

Eckert Number (Ec)

The Eckert number Ec is defined by
2

0

P w

v
Ec

C T T

where wT T is the temperature difference between the wall and the fluid at a large

distance from the body.
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Shear Stress ( )

The dimensionless skin-friction coefficient is generally known as the shear stress at

the plate and is defined as follows:

0y

u

y
τ

Nusselt Number (Nu)

The dimensionless rate of heat transfer is known as the Nusselt number and is defined

as follows:

0y

Nu
y

θ

Sherwood Number (Sh)

The dimensionless coefficient of mass transfer is known as the Sherwood number and

is defined as follows:

0

h

y

S
y

φ
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Chapter 3

Governing Equations and Solution Procedure

3.1 Governing Equations

Consider the two-dimensional flow of an electrically conducting, viscous,

incompressible, radiating, fluid of density through a porous medium occupying a

semi-infinite region of the space bounded by a vertical infinite surface. Figure 3.1.1

shows the physical model where the x-axis is taken along the vertical and y axis is

horizontal perpendicular to the plate. A uniform magnetic field B0 is applied normally

to the flow region.

Therefore the governing equations describing the model proposed in the study are

0
v

y
(3.1.1)

22
0

2 21

Bu u
v g T T g C C u u

y y km

σ υυ β β
ρ

(3.1.2)

22

2

1 r

p p p

qT T u
v

y C y C y C y

κ υ
ρ ρ

(3.1.3)

Figure 3.1.1 The physical co-ordinate system
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2

2

C C
v D Kc C C

y y
(3.1.4)

The corresponding boundary conditions are:

0 : 0, ,

: 0, ,
w wy u T T C C

y u T T C C
(3.1.5)

Here u and v are the velocity components along the x and y- directions respectively, T

is the fluid temperature; Tw is the temperature of the fluid at the plate, T is the fluid

temperature far away from the plate, g is the acceleration due to gravity, is the

thermal conductivity, ρ is the density of the fluid, Cp is the specific heat at constant

pressure, is the electrical conductivity, D is the chemical molecular diffusivity, v0 is

the uniform velocity, C is the concentration of species, Cw is the mean concentration,

C is the concentration of species for uniform flow, B0 is the uniform applied

magnetic field, is the density, υ is the kinematic viscosity, is the coefficient of

thermal expansion and β is the coefficient of thermal expansion with concentration

and the other symbols have their usual meaning.

3.2 Calculation Technique

Many physical phenomena in applied science and engineering when formulated into

mathematical models fall into a category of systems known as non-linear coupled

partial differential equations. Most of these problems can be formulated as second

order partial differential equations. A system of non-linear coupled partial differential

equations with the boundary conditions is very difficult to solve analytically. The

governing equations of our problem contain a system of partial differential equations

which are transformed by usual transformations into a non-dimensional system of

non-linear coupled partial differential equations with boundary conditions. However,

a great deal of insight as to the flow behavior can be obtained if we adopt a

perturbation method. Hence the solution of our problem would be based on

perturbation methods.
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According to perturbation techniques, the solution is represented by the first few

terms of an asymptotic expansion, usually not more than three terms. The expansion

may be carried out in terms of a parameter (small or large) which appears naturally in

the equations, or which may be artificially introduced for convenience. Such

expansions are called parameter perturbations. The difficulty other than complexity is

that perturbation methods are ultimately series solutions in a small parameter.

3.3 Formulation of the Problem

To make dimensionless the governing equations from (3.1.1) to (3.1.4) under the

boundary conditions (3.1.5) we now introduce the following dimensionless

quantities.

2
0 1

2
0 0

3 3
0 0

2 2 2
0 0 0

2 2 2
0 0

41
, , , ,

, , Pr ,

, , ,

W w

Ww p

P w

v T T C C I
u u y y F

v T T C C v

g C Cg T T C
Gr Gm Sc

v v D

v B v
Kc Kc Ec M k k

v vC T T

υθ φ
υ κ

βυβυ μ υ
κ

σ υυ
ρ υ

(3.3.1)

Equation (3.1.1) implies,

0 ( )v v say (3.3.2)

In the optically thick limit, the fluid does not absorb its own emitted radiation in

which there is no self absorption, but it does absorb radiation emitted by the

boundaries. Mahaptra et al. [25] showed that in the optically thick limit for a non

gray near equilibrium as

14rq
I T T

y
(3.3.3)

Now,
2

0 0
0

v vu u u u y u u u
v

y u y u y y y yυ υ

2 2 32 2 2
0 0 0 0

2 2 2 2

v v v vu u u y u y u u

y y y y y y y y y y yυ υ υ υ
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So we get from (3.1.2)

22
0

2 21

Bu u
v g T T g C C u u

y y km

σ υυ β β
ρ

2 3 2 32
0 0 0 0

0 02 2 21

v v B vu u
v g T T g C C v u u

y y km

συ β β
υ υ υρ

3 3 2 32
0 0 0 0

02 21

v v B vu u
g T T g C C v u u

y y km

σβ β
υ υ υρ

22
0

2 3 3 2 2
0 0 0 1

g C Cg T T Bu u u
u

y y v v kv m

βυβυ σ υ
ρ

2

2 3 3 2
0 0 1

ww

w w

g C Cg T T T T C Cu u M u
u

y y v T T v C C m k

βυβυ

2

2 2

1

1

u u M
Gr Gm u

y y m k
θ φ

2

2 2

1
,

1

u u M
Nu Gm Gr N

y y m k
φ θ

Again we have

0
w

vT T T y
T T

y y y y y

θ θ θ
θ θ υ

22 2
0 0

2 2 2w w

v vT T T y y
T T T T

y y y y y y y y y y

θ θ
υ υ

Also
1

Pr Pr
p

p
p

C

C C

μκ υ
μρ
υ

and
2 2

0 0
2

1

Pr Pr
r

p

F v vq F
T T T T

C y

κυ
ρ κ υ υ

Thus from (3.1.3) we get

22 4 22
0 0 0 0

0 2 2 2Pr Prw w
p

v v v vu F
v T T T T T T

y y C y

θ υ θ υ
υ υ υ υ
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22 2 4 22
0 0 0 0

2

1 1

Pr Prw w
p

v v v vu F
T T T T T T

y y C y

θ θ
υ υ υ υ

222
0

2
Pr Pr

wp w

v T Tu
F

y y y T TC T T

θ θ

22

2
Pr Pr

u
F Ec

y y y

θ θ θ

And finally,

0 0
w w

v vC C C y
C C C C

y y y y y y

φ φ φ φ
φ φ υ υ

22 2
0 0

2 2 2w w

v vC C C y y
C C C C

y y y y y y y y y y

φ φ
υ υ

Therefore, we have from (3.1.4)

2 2
0 0

0 2 2w w

v v
v C C D C C Kc C C

y y

φ φ
υ υ

2 2 2
0 0

2 2w w

v v
C C D C C Kc C C

y y

φ φ
υ υ

2 2

2 2
0 w

C CKc

D y y D v C C

υ φ φ υ

2

2 2
0

Kc
Sc

y y D v

φ φ υ υ φ

2

2
0Sc KcSc

y y

φ φ φ

Thus the non-dimensional form of the governing equations (3.1.2), (3.1.3) and (3.1.4)

are respectively as follows:

u u Nu Gm Grφ θ (3.3.4)

where
2

1

1

M
N

m k

2Pr PrF Ecuθ θ θ (3.3.5)
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0Sc KcScφ φ φ (3.3.6)

where dashes denote differentiation with respect to y.

The corresponding boundary conditions (3.1.5) in non-dimensional forms are:

0 : 0, 1, 1

: 0, 0, 0

y u

y u

θ φ
θ φ

(3.3.7)

3.4 Method of Solution

To solve the equations (3.3.4), (3.3.5) and (3.3.6) with boundary conditions (3.3.7),

we use the following simple perturbation. The governing equations (3.3.4), (3.3.5)

and (3.3.6) are expanded in power of Eckert number Ec(<<1) so we consider Ec as a

perturbation quantity. Also we consider a second order correction of it.

2
0 1

2
0 1

2
0 1

u y u y Ecu y O Ec

y y Ec y O Ec

y y Ec y O Ec

θ θ θ

φ φ φ

(3.4.1)

Substituting (3.4.1) in equations (3.3.4), (3.3.5) and (3.3.6) we get:

(3.3.4) 2 2 2
0 1 0 1 0 1u Ecu O Ec u Ecu O Ec N u Ecu O Ec

2 2
0 1 0 1Gm Ec O Ec Gr Ec O Ecφ φ θ θ

2
0 0 0 1 1 1u u Nu Ec u u Nu O Ec

2
0 0 1 1Gm Gr Ec Gm Gr O Ecφ θ φ θ (3.4.2)

Again,

(3.3.5) 2 2 2
0 1 0 1 0 1PrEc O Ec Ec O Ec F Ec O Ecθ θ θ θ θ θ

2
2

0 1Pr Ec u Ecu O Ec

2 2 2
0 0 0 1 1 1 0Pr Pr PrF Ec F O Ec Ec u O Ecθ θ θ θ θ θ (3.4.3)

And,

(3.3.6) 2 2 2
0 1 0 1 0 1 0Ec O Ec Sc Ec O Ec KcSc Ec O Ecφ φ φ φ φ φ
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2
0 0 0 1 1 1 0Sc KcSc Ec Sc KcSc O Ecφ φ φ φ φ φ (3.4.4)

Now equating the coefficients of Ec0 and Ec1 and neglecting those of Ec2 and higher

powers, form the equations (3.4.2), (3.4.3) and (3.4.4) we have

0 0 0 0 0u u Nu Gm Grφ θ (3.4.5)

1 1 1 1 1u u Nu Gm Grφ θ (3.4.6)

0 0 0Pr 0Fθ θ θ (3.4.7)

2
1 1 1 0Pr PrF uθ θ θ (3.4.8)

0 0 0 0Sc ScKcφ φ φ (3.4.9)

1 1 1 0Sc ScKcφ φ φ (3.4.10)

subject to the boundary conditions:

0 1 0 1 0 1

0 1 0 1 0 1

0 : 0, 0, 1, 0, 1, 0

: 0, 0, 0, 0, 0, 0

y u u

y u u

θ θ φ φ

θ θ φ φ
(3.4.11)

Now we have to solve the above equations (3.4.5) to (3.4.10) using boundary

conditions (3.4.11).

To find the solution of the above equations let us consider, 0 ( ) myy eφ (where 0mye )

as a trial solution of equation (3.4.9)

0
myy meφ

and 2
0

myy m eφ

Using above we have from equation (3.4.9)

2 0my my mym e Scme ScKce

2 0mym Scm ScKc e

2 0m Scm ScKc since 0mye

which is called the auxiliary equation.
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Now values of m are 21
4

2
m Sc Sc ScKc

Therefore the general solution will be

2 21 1
4 4

2 2
0 1 2

Sc Sc ScKc y Sc Sc ScKc y
C e C eφ (3.4.12)

To get the values of C1 and C2, we use the boundary conditions

0

0

1 on 0

0 as

y

y

φ
φ

then we obtain C1=0 and C2=1

(3.4.12) 1
0

k yeφ (3.4.13)

where 2
1

1
4

2
k Sc Sc ScKc

Again, let, a solution of equation (3.4.10) is 1
myy eφ (where 0mye )

1
myy meφ

and 2
1

myy m eφ

so from (3.4.10) we get

2 0my my mym e Scme ScKce

2 0mym Scm ScKc e

2 0m Scm ScKc since 0mye

which is called the auxiliary equation.

The values of m are, 21
4

2
m Sc Sc ScKc

Thus the general solution of (3.4.10) is

2 21 1
4 4

2 2
1 1 2

Sc Sc ScKc y Sc Sc ScKc y
C e C eφ (3.4.14)

Using the boundary conditions
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1

1

0 on 0

0 as

y

y

φ
φ

we get C1=0 and C2=0

(3.4.14) 1 0φ (3.4.15)

To solve the equation (3.4.7), let, 0
myy eθ (where 0mye ) is a probable solution of it.

0
myy meθ

and 2
0

myy m eθ

So we have from (3.4.7) the auxiliary equation (A.E.) :

2 Pr 0my my mym e me Fe

2 Pr 0mym m F e

2 Pr 0m m F since 0mye

21
Pr Pr 4

2
m F

So the general solution of (3.4.7) is

2 21 1
Pr Pr 4 Pr Pr 4

2 2
0 1 2

F y F y
C e C eθ (3.4.16)

Using boundary conditions

0

0

1 on 0

0 as

y

y

θ
θ

we get C1=0 and C2=1

(3.4.16) 2
0

k yeθ (3.4.17)

where 2
2

1
Pr Pr 4

2
k F

Again (3.4.5) 0 0 0 0 0u u Nu Gm Grφ θ

1 2
0 0 0

k y k yu u Nu Gme Gre [by (3.4.13) and (3.4.13)] (3.4.18)

Similarly let 0
myu y e (where 0mye ) is a solution of (3.4.18)
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0
myu y me

and 2
0

myu y m e

So from (3.4.18), the auxiliary equation (A.E.):

2 0my my mym e me Ne

2 0mym m N e

2 0m m N since 0mye

1
1 1 4

2
m N

Then the complimentary function (C.F.) takes the form:

1 1
1 1 4 1 1 4

2 2
1 2c

N y N y

ou C e C e

Now particular integral (P.I.): 1 2
0 2

1
p

k y k yu Gme Gre
D D N

1 2

2 2

1 1k y k yGm e Gr e
D D N D D N

1 2

2 2
1 1 2 2

1 1k y k yGm e Gr e
k k N k k N

Thus the general solution is
c po o ou u u

1 2

1 1
1 1 4 1 1 4

2 2
1 2 2 2

1 1 2 2

1 1N y N y k y k y
ou C e C e Gm e Gr e

k k N k k N
(3.4.19)

To get the values of the constants C1 and C2, we use the following boundary

conditions

0

0

0 on 0

0 as

u y

u y

Then we get C1=0 and 2 2 2
1 1 2 2

1 1
C Gm Gr

k k N k k N

Thus the general solution becomes

61 2
0 3 4 5

k yk y k yu k e k e k e (3.4.20)
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where 3 4 5 3 4 62 2
1 1 2 2

1
, , , 1 1 4

2

Gm Gr
k k k k k k N

k k N k k N

Again for the solution of the equation (3.4.8) we have

2
1 1 1 0Pr PrF uθ θ θ

61 2
2

1 3 2 4 5 6Pr k yk y k yk k e k k e k k e [by (3.4.20)]

61 2 1 222 2 ( )2 2 2 2 2 2
1 3 2 4 5 6 1 2 3 4Pr 2k yk y k y k k yk k e k k e k k e k k k k e

1 6 2 6

1 3 5 6 2 4 5 62 2k k y k k yk k k k e k k k k e

6 13 151 2 1122 2
1 1 1 7 8 9 10 12 14Pr Pr k y k y k yk y k y k yF k e k e k e k e k e k eθ θ θ (3.4.21)

where, 2 2 2 2 2 2
7 1 3 8 2 4 9 5 6 10 1 2 3 4 11 1 2, , , 2 , ,k k k k k k k k k k k k k k k k k

12 1 3 5 6 13 1 6 14 2 4 5 6 15 2 62 , , 2 ,k k k k k k k k k k k k k k k k

Let 1
myy eθ (where 0mye ) is a probable solution of the equation (3.4.21)

1
myy meθ

and 2
1

myy m eθ

So from the equation (3.4.21) the auxiliary equation (A.E.) is :

2 Pr 0my my mym e me Fe

2 Pr 0mym m F e

2 Pr 0m m F since 0mye

21
Pr Pr 4

2
m F

Complimentary function (C.F.) is:
2 21 1

Pr Pr 4 Pr Pr 4
2 2

1 1 2c

F y F y
C e C eθ

Now to get the solution of the non homogeneous part of (3.4.21) (P.I.):

6 13 151 2 1122 2
1 7 8 9 10 12 142

1
Pr

Prp

k y k y k yk y k y k yk e k e k e k e k e k e
D D F

θ
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61 2 22 2
7 8 92 2 2

1 1 1
Pr

Pr Pr Pr
k yk y k yk e k e k e

D D F D D F D D F

13 1511
10 12 142 2 2

1 1 1

Pr Pr Pr
k y k yk yk e k e k e

D D F D D F D D F

61 2 22 27 8 9
2 2 2

1 1 2 2 6 6

Pr
4 2Pr 4 2Pr 4 2Pr

k yk y k yk k k
e e e

k k F k k F k k F

13 151110 12 14
2 2 2

11 11 13 13 15 15Pr Pr Pr
k y k yk yk k k

e e e
k k F k k F k k F

Thus the general solution is 1 1 1c p
θ θ θ

2 2

1

1 1
Pr Pr 4 Pr Pr 4 272 2

1 1 2 2
1 1

Pr
4 2 Pr

F y F y k yk
C e C e e

k k F
θ

62 11228 9 10
2 2 2

2 2 6 6 11 114 2 Pr 4 2 Pr Pr
k yk y k yk k k

e e e
k k F k k F k k F

13 1512 14
2 2

13 13 15 15Pr Pr
k y k yk k

e e
k k F k k F

(3.4.22)

Using boundary conditions

1

1

0 on 0

0 as

y

y

θ
θ

we have C1=0

and 7 8 9 10
2 2 2 2 2

1 1 2 2 6 6 11 11

Pr
4 2 Pr 4 2 Pr 4 2 Pr Pr

k k k k
C

k k F k k F k k F k k F

12 14
2 2

13 13 15 15Pr Pr

k k

k k F k k F

Therefore the required solution of the equation takes the following form (3.4.22)

6 13 151 2 11 222 2
1 16 17 18 19 20 21 22

k y k y k yk y k y k y k yk e k e k e k e k e k e k eθ (3.4.23)
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where, 7 8 9
16 17 182 2 2

1 1 2 2 6 6

Pr Pr Pr
, , ,

4 2 Pr 4 2 Pr 4 2 Pr

k k k
k k k

k k F k k F k k F

10 12 14
19 20 212 2 2

11 11 13 13 15 15

Pr Pr Pr
, , ,

Pr Pr Pr

k k k
k k k

k k F k k F k k F

22 16 17 18 19 20 21k k k k k k k

Again we want to find the solution of u1

(3.4.6) 1 1 1 1 1u u Nu Gm Grφ θ

6 13 151 2 11 222 2
1 1 1 16 17 18 19 20 21 22

k y k y k yk y k y k y k yu u Nu Gr k e k e k e k e k e k e k e

[by (3.4.15) and (3.4.23)] (3.4.24)

Let 1
myu y e (where 0mye ) is a probable solution of (3.4.24)

1
myu y me

and 2
1

myu y m e

The auxiliary equation (A.E.) of (3.4.24):

2 0my my mym e me Ne

2 0mym m N e

2 0m m N since 0mye

1
1 1 4

2
m N

Complimentary function (C.F.) :
1 1

1 1 4 1 1 4
2 2

1 1 2c

N y N y
u C e C e

Now particular integral (P.I.) :

6 13 151 2 11 222 2
1 16 17 18 19 20 21 222

1
p

k y k y k yk y k y k y k yu Gr k e k e k e k e k e k e k e
D D N

61 2 22 2
16 17 182 2 2

1 1 1 k yk y k yGr k e k e k e
D D N D D N D D N

1311
19 202 2

1 1 k yk yk e k e
D D N D D N
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15 2
21 222 2

1 1k y k yk e k e
D D N D D N

61 2 22 216 17 18
2 2 2

1 1 2 2 6 64 2 4 2 4 2
k yk y k yk k k

Gr e e e
k k N k k N k k N

13 1511 219 20 21 22
2 2 2 2

11 11 13 13 15 15 2 2

k y k yk y k yk k k k
e e e e

k k N k k N k k N k k N

So the general solution is 1 1 1c p
u u u

1 2

1 1
1 1 4 1 1 4 2 216 172 2

1 1 2 2 2
1 1 2 24 2 4 2

N y N y k y k yk k
u C e C e Gr e e

k k N k k N

6 1311218 19 20
2 2 2

6 6 11 11 13 134 2
k y k yk yk k k

e e e
k k N k k N k k N

15 221 22
2 2

15 15 2 2

k y k yk k
e e

k k N k k N
(3.4.25)

Now by the boundary conditions

1

1

0 on 0

0 as

u y

u y

we get C1=0

and 16 17 18 19
2 2 2 2 2

1 1 2 2 6 6 11 114 2 4 2 4 2
k k k k

C Gr
k k N k k N k k N k k N

20 21 22
2 2 2

13 13 15 15 2 2

k k k

k k N k k N k k N

Thus (3.4.25) 6 13 15 61 2 11 222 2
1 23 24 25 26 27 28 29 30

k y k y k y k yk y k y k y k yu k e k e k e k e k e k e k e k e

(3.4.26)

where, 16 17 18
23 24 252 2 2

1 1 2 2 6 6

r r r
, , ,

4 2 4 2 4 2

G k G k G k
k k k

k k N k k N k k N

19 20 21 22
26 27 28 292 2 2 2

11 11 13 13 15 15 2 2

r r r r
, , , ,

G k G k G k G k
k k k k

k k N k k N k k N k k N

30 23 24 25 26 27 28 29k k k k k k k k
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So 0 1u u Ecu

6 61 2 1 2 1122 2
3 4 5 23 24 25 26

k y k yk y k y k y k y k yk e k e k e Ec k e k e k e k e

13 15 62
27 28 29 30

k y k y k yk yk e k e k e k e [by (3.4.20) and (3.4.26)]

6 61 2 1 2 22 2
3 4 29 5 30 23 24 25

k y k yk y k y k y k yu k e k Eck e k Eck e Ec k e k e k e

13 1511
26 27 28

k y k yk yk e k e k e (3.4.27)

Again 0 1Ecθ θ θ

6 13 152 1 2 11 222 2
16 17 18 19 20 21 22

k y k y k yk y k y k y k y k ye Ec k e k e k e k e k e k e k e

[by (3.4.17) and (3.4.23)]

6 13 152 1 2 1122 2
22 16 17 18 19 20 211 k y k y k yk y k y k y k yEck e Ec k e k e k e k e k e k eθ

(3.4.28)

And 0 1Ecφ φ φ

1k yeφ [by (3.4.13) and (3.4.15)] (3.4.29)

The non-dimensional skin friction at the surface is
0y

u

y
τ

Now we have from (3.4.27)

6 61 2 1 2 11

13 15 62

22 2
3 4 5 23 24 25 26

27 28 29 30

k y k yk y k y k y k y k y

k y k y k yk y

u k e k e k e Ec k e k e k e k e

k e k e k e k e

6 61 2 1 2

13 15 611 2

22 2
1 3 2 4 5 6 1 23 2 24 6 25

11 26 13 27 15 28 2 29 6 30

2 2 2k y k yk y k y k y k y

k y k y k yk y k y

u
k k e k k e k k e Ec k k e k k e k k e

y

k k e k k e k k e k k e k k e

1 3 2 4 5 6 1 23 2 24 6 25 11 26 13 27

0

15 28 2 29 6 30

2 2 2
y

u
k k k k k k Ec k k k k k k k k k k

y

k k k k k k

τ

The rate of heat transfer in terms of the Nusselt number is
0y

Nu
y

θ
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Here we get from (3.4.28)

6 13 152 1 2 11 222 2
16 17 18 19 20 21 22

k y k y k yk y k y k y k y k ye Ec k e k e k e k e k e k e k eθ

6 132 1 2 11

15 2

22 2
2 1 16 2 17 6 18 11 19 13 20

15 21 2 22

2 2 2 k y k yk y k y k y k y

k y k y

k e Ec k k e k k e k k e k k e k k e
y

k k e k k e

θ

2 1 16 2 17 6 18 11 19 13 20 15 21 2 22

0

2 2 2
y

Nu k Ec k k k k k k k k k k k k k k
y

θ

The Sherwood number which is in non-dimensional form is
0

h

y

S
y

φ

Now from equation (3.4.29), 1k yeφ

1
1

k yk e
y

φ

1

0

h

y

S k
y

φ
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Chapter 4

Results and Discussion

To observe the physical situation of the problem of our study the effects of Prandtl

number (Pr), Schmidt number (Sc), magnetic parameter (M), Grashof number (Gr),

modified Grashof number (Gm), Eckert number (Ec), Hall parameter (m), chemical

reaction parameter (Kc), permeability parameter (k), radiation parameter (F) on

velocity field, temperature field, concentration field, skin-friction, the rate of heat

transfer in terms of Nusselt number (Nu) and the rate of mass transfer in terms of

Sherwood number (Sh) are studied taking different numerical values. To see the

effects of these parameters, the values of Schmidt numbers (Sc) are chosen for

hydrogen (Sc=0.22), water-vapor (Sc=0.60), ammonia (Sc=0.78) at 25ºC and one

atmosphere pressure. The values of Prandtl numbers (Pr) are chosen for sodium

(Pr=0.01), air (Pr=0.71) and water (Pr=7.0). We also choose the Grashof numbers

(Gr) for heat transfer are Gr=5.0, 6.0, 10.0 and modified Grashof numbers for mass

transfer are Gm=2.0, 3.0, 4.0. The values of magnetic parameter are given M=1.0,

3.0, 5.0 arbitrarily.

The velocity profiles u for different values of the above parameters are illustrated in

Figure 4.1.1 to Figure 4.1.10, the temperature profiles for different values of the

parameters are described in Figure 4.2.1 to Figure 4.2.3 and the concentration profiles

for different values of the above parameters are expressed in Figure 4.3.1 to Figure

4.3.2. We compare velocity profiles in presence of magnetic field and without

magnetic field in the Figure 4.4.1 to Figure 4.4.18. Also the numerical values of

Skin-Friction ( ), the rate of heat transfer (Nu) and the rate of mass transfer (Sh) are

shown in the Table 4.5.1 to Table 4.5.3.
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4.1 Velocity Profiles

The Figure 4.1.1 to Figure 4.1.10 depict the velocity distribution u for different

values of magnetic parameter (M), Hall parameter (m), chemical reaction parameter

(Kc), permeability parameter (k), radiation parameter (F), Grashof number (Gr),

modified Grashof number (Gm), Schmidt number (Sc), Prandtl number (Pr) and

Eckert number (Ec) respectively.

In the Figure 4.1.1 it is observed that the velocity decreases with the increase of

magnetic parameter (M). Physically this is true as the magnetic force retards the flow,

velocity decreases. In this figure the dotted line represents for M=5.0, solid line for

M=3.0 and dashing line for M=1.0.

Figure 4.1.2 shows the velocity distributions for different values of Hall parameter

(m). After analyzing the figure it is noticed that the velocity increases with the

increase of Hall parameter (m). In this figure the dashing line denotes for m=1.0,

solid line for m=2.0 and dotted line for m=3.0. For our interest, we calculate the

increasing rate of the velocity at the corresponding point y=5 of the curve from

m=1.0 to m=2.0 is 8% and from m=2.0 to m=3.0 is 4%.

It is described in the Figure 4.1.3 that the velocity distributions for different values of

chemical reaction parameter (Kc). In this figure we observe the velocity decreases

with the increase of chemical reaction parameter (Kc). In this figure the dashing line

indicates for Kc=−0.04, solid line for Kc=0.0 and dotted line for Kc=0.04.

We see in Figure 4.1.4 that the velocity increases with the increase of permeability

parameter (k). In this figure the pick points of the curves for k=0.1, k=0.5 and k=1.0

are obtained at y=0.55, y=0.8 and y=1.0 respectively and after arriving the pick point

it decreases smoothly. Here the dashing line denotes for k=0.1, solid line for k=0.5

and dotted line for k=1.0. For our interest, we have calculated the increasing rate of

the velocity at the corresponding point y=4 of the curve from k=0.1 to k=0.5 is

77.5% and from k=0.5 to k=1.0 is 54%.
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Figure 4.1.5 indicates that the velocity decreases with the increase of radiation

parameter (F). The dashing line denotes for F=0.5, solid line for F=5.0 and dotted

line for F=10.0.

From Figure 4.1.6 the velocity increases with the increase of Grashof number (Gr).

The dashing line represents for Gr=5.0, solid line for Gr=6.0 and dotted line for

Gr=10.0. At y=0 the velocity profiles are zero.

In the Figure 4.1.7 it is observed that the velocity increases with the increase of

modified Grashof number (Gm). The dashing line indicates for Gm=2.0, solid line for

Gm=3.0 and dotted line for Gm=4.0.

It is clear in Figure 4.1.8 that the velocity decreases with the increase of Schmidt

number (Sc). In this figure the dotted line represents for Sc=0.78, solid line for

Sc=0.60 and dashing line for Sc=0.22. For our interest, we calculate the decreasing

rate of the velocity at the corresponding point y=4 of the curve from Sc=0.22 to

Sc=0.60 is 81.58% and from Sc=0.60 to Sc=0.78 is 27.78%.

Also Figure 4.1.9 marks that the velocity decreases with the increase of Prandtl

number (Pr). Physically it is true because the increase in the Prandtl number due to

increasing the viscosity of the fluid which makes the fluid thick and hence decrease

the velocity of fluid. In this figure the dashing line denotes for Pr=0.01, solid line for

Pr=0.70 and dotted line for Pr=7.0.

The velocity distributions for different values of Eckert number (Ec) is shown in the

Figure 4.1.10. In this figure we observe the velocity increases with the increase of

Eckert number (Ec). In this figure the dashing line indicates for Ec=0.001, solid line

for Ec=0.09 and dotted line for Ec=0.3.
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Figure 4.1.1 Variation of velocity profiles u for different values of magnetic parameter M where
Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.1.2 Variation of velocity profiles u for different values of hall parameter m where M=3.0,
Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and Ec=0.01 against y.
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Figure 4.1.3 Variation of velocity profiles u for different values of chemical reaction parameter Kc
where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01
against y.

Figure 4.1.4 Variation of velocity profiles u for different values of permeability parameter k where
M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2 and Ec=0.01 against y.
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Figure 4.1.5 Variation of velocity profiles u for different values of radiation parameter F where
M=3.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.

Figure 4.1.6 Variation of velocity profiles u for different values of Grashof number Gr where

M=3.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.
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Figure 4.1.7 Variation of velocity profiles u for different values of modified Grashof number Gm

where M=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.

Figure 4.1.8 Variation of velocity profiles u for different values of Schmidt number Sc where
M=3.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.
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Figure 4.1.9 Variation of velocity profiles u for different values of Prandtl number Pr where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and Ec=0.01 against y.

Figure 4.1.10 Variation of velocity profiles u for different values of Eckert number Ec where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and Pr=0.71 against y.
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4.2 Temperature Distributions

The temperature distributions for different values of radiation parameter (F),

Prandtl number (Pr) and Eckert number (Ec) are shown in the Figure 4.2.1 to Figure

4.2.3 respectively.

From Figure 4.2.1 it is clear that the temperature decreases with the increase of

radiation parameter (F). The dashing line denotes for F=0.5, solid line for F=5.0 and

dotted line for F=10.0. At y=0 the temperature profiles attain the maximum value 1.0

and then decrease smoothly and attain to zero with the increase of y.

It is observed in the Figure 4.2.2 that the temperature distributions for different

values of Prandtl number (Pr). In this figure it is noticed that the temperature

decreases with the increase of Prandtl number (Pr). The dashing line denotes for

Pr=0.01, solid line for Pr=0.71 and dotted line for Pr=7.0. The temperature profiles

attain the maximum value 1.0 at y=0 and then gradually attain nearly to zero for large

values of y.

Figure 4.2.3 shows the temperature distributions for different values of Eckert

number (Ec). After analysing the figure it is noticed that the temperature increases

with the increase of Eckert number (Ec). In this figure the dashing line indicates for

Ec=0.001, solid line for Ec=0.09 and dotted line for Ec=0.3.
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Figure 4.2.1 Variation of temperature profiles for different values of radiation parameter F where
M=3.0, Gr=6.0, Gm =3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.

Figure 4.2.2 Variation of temperature profiles for different values of Prandtl number Pr where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and Ec=0.01 against y.
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Figure 4.2.3 Variation of temperature profiles u for different values of Eckert number Ec where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2, k=0.5 and Pr=0.71 against y.

4.3 Concentration Distributions

From the Figure 4.3.1 and Figure 4.3.2 it is observed that the concentration

distributions for different values of chemical reaction parameter (Kc) and Schmidt

number (Sc).

In the Figure 4.3.1 it depicts that the concentration decreases with the increase of

reaction parameter (Kc). The dashing line indicates for Kc=−0.04, solid line for

Kc=0.0 and dotted line for Kc=0.04. In this figure maximum value of concentration

profiles for y=0 is 1.0 the concentration profiles decrease smoothly and attain to zero

for large value of y.

Figure 4.3.2 marks that the concentration decreases with the increase of Schmidt

number (Sc). The dashing line indicates for Sc=0.22, solid line for Sc=0.60 and

dotted line for Sc=0.78. We get the maximum value of concentration profiles for y=0

the concentration profiles gradually attain to zero with the increase of y.
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Figure 4.3.1 Variation of concentration profiles for different values of chemical reaction
parameter Kc where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Sc=0.22, Pr=0.71, m=2, k=0.5 and Ec=0.01
against y.

Figure 4.3.2 Variation of concentration profiles for different values of Schmidt number Sc where
M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Pr=0.71, m=2, k=0.5 and Ec=0.01 against y.
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4.4 Comparison

Figure 4.4.1 shows the velocity profiles for magnetic field (M=3.0) with the different

values of Hall parameter (m). On the other hand Figure 4.4.2 represents the graphs

without magnetic field (M=0) for different values of hall parameter (m). In these

figures we see that the graphs of velocity profiles coincides for M=0, that is there is

no effect of Hall parameter (m) for magnetic field M=0.

Figure 4.4.3, Figure 4.4.5, Figure 4.4.7, Figure 4.4.9, Figure 4.4.11, Figure 4.4.13,

Figure 4.4.15 and Figure 4.4.17 depict the velocity profiles for magnetic field

(M=3.0) with the different values of chemical reaction parameter Kc, permeability

parameter k, radiation parameter F, Grashof number Gr, modified Grashof number

Gm, Schmidt number Sc, Prandtl number Pr and Eckert number (Ec) respectively.

Whereas Figure 4.4.4, Figure 4.4.6, Figure 4.4.8, Figure 4.4.10, Figure 4.4.12, Figure

4.4.14, Figure 4.4.16 and Figure 4.4.18 represents the graphs without magnetic field

(M=0) for different values of Kc, k, F, Gr, Gm, Sc Pr and Ec respectively. From the

comparison of the Figure 4.4.3 and Figure 4.4.4; Figure 4.4.5 and Figure 4.4.6;

Figure 4.4.7 and Figure 4.4.8; Figure 4.4.9 and Figure 4.4.10; Figure 4.4.11 and

Figure 4.4.12; Figure 4.4.13 and Figure 4.4.14; Figure 4.4.15 and Figure 4.4.16;

Figure 4.4.17 and Figure 4.4.18 it is clear that the velocity in magnetic field is less

than without magnetic field.
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Figure 4.4.1 Variation of velocity profiles u for different values of hall parameter m where M=3.0,
Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and Ec=0.01 against y.

Figure 4.4.2 Variation of velocity profiles u for different values of hall parameter m where M=0.0,
Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, k=0.5 and Ec=0.01 against y.
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Figure 4.4.3 Variation of velocity profiles u for different values of chemical reaction parameter Kc
where M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01
against y.

Figure 4.4.4 Variation of velocity profiles u for different values of chemical reaction parameter Kc
where M=0.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01
against y.
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Figure 4.4.5 Variation of velocity profiles u for different values of permeability parameter k where
M=3.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0 and Ec=0.01 against y.

Figure 4.4.6 Variation of velocity profiles u for different values of permeability parameter k where
M=0.0, Gr=6.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0 and Ec=0.01 against y.
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Figure 4.4.7 Variation of velocity profiles u for different values of radiation parameter F where
M=3.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.4.8 Variation of velocity profiles u for different values of radiation parameter F where
M=0.0, Gr=6.0, Gm=3.0, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.
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Figure 4.4.9 Variation of velocity profiles u for different values of Grashof number Gr where
M=3.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.4.10 Variation of velocity profiles u for different values of Grashof number Gr where
M=0.0, Gm=3.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.
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Figure 4.4.11 Variation of velocity profiles u for different values of modified Grashof number Gm

where M=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.4.12 Variation of velocity profiles u for different values of modified Grashof number Gm

where M=0.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.
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Figure 4.4.13 Variation of velocity profiles u for different values of Schmidt number Sc where
M=3.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.4.14 Variation of velocity profiles u for different values of Schmidt number Sc where
M=0.0, Gm =3.0, Gr=6.0, F=0.5, Kc=0.04, Pr=0.71, m=2.0, k=0.5 and Ec=0.01 against y.
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Figure 4.4.15 Variation of velocity profiles u for different values of Prandtl number Pr where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and Ec=0.01 against y.

Figure 4.4.16 Variation of velocity profiles u for different values of Prandtl number Pr where
M=0.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and Ec=0.01 against y.
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Figure 4.4.17 Variation of velocity profiles u for different values of Eckert number Ec where
M=3.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and Pr=0.71 against y.

Figure 4.4.18 Variation of velocity profiles u for different values of Eckert number Ec where
M=0.0, Gm=3.0, Gr=6.0, F=0.5, Kc=0.04, Sc=0.22, m=2.0, k=0.5 and Pr=0.71 against y.
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4.5 Skin-friction ( ), Nusselt number (Nu) and Sherwood number(Sh)

A variation in skin friction ( ) is shown in Table 4.5.1. From this table it is observed

that skin friction ( ) increases with the increase in Hall parameter (m) and

permeability parameter (k) whereas it decreases with the increase of Magnetic

parameter (M), radiation parameter (F) and chemical reaction parameter (Kc).

A variation in the heat transfer rate expressed in terms of the Nusselt number is

presented Table 4.5.2. From this table it is noticed that Nusselt number (Nu) increases

with the increase of magnetic parameter (M), radiation parameter (F) and chemical

reaction parameter (Kc) and Nusselt number (Nu) decreases with the increase of Hall

parameter (m) and permeability parameter (k).

Similarly a variation in the Sherwood number is shown in Table 4.5.3. It is clear from

this table that Sherwood number (Sh) increases with the increase of Schmidt number

(Sc) and chemical reaction parameter (Kc).

Table 4.5.1 Numerical values of Skin-Friction ( )

Sl. No. M m F Kc k
1 1.0 2.0 0.5 0.04 0.5 4.99799
2 3.0 2.0 0.5 0.04 0.5 4.65836
3 5.0 2.0 0.5 0.04 0.5 4.38312
4 3.0 1.0 0.5 0.04 0.5 4.10228
5 3.0 2.0 0.5 0.04 0.5 4.65836
6 3.0 3.0 0.5 0.04 0.5 4.90566
7 3.0 2.0 0.5 0.04 0.5 4.65836
8 3.0 2.0 5.0 0.04 0.5 3.65714
9 3.0 2.0 10.0 0.04 0.5 3.35018
10 3.0 2.0 0.5 −0.04 0.5 4.79238
11 3.0 2.0 0.5 0.0 0.5 4.70956
12 3.0 2.0 0.5 0.04 0.5 4.65836
13 3.0 2.0 0.5 0.04 0.1 2.50745
14 3.0 2.0 0.5 0.04 0.5 4.65836
15 3.0 2.0 0.5 0.04 1.0 5.70216
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Table 4.5.2 Numerical values of the rate of Heat Transfer (Nu)

Sl. No. M m F Kc k Nu
1 1.0 2.0 0.5 0.04 0.5 1.11868
2 3.0 2.0 0.5 0.04 0.5 1.12324
3 5.0 2.0 0.5 0.04 0.5 1.12659
4 3.0 1.0 0.5 0.04 0.5 1.12970
5 3.0 2.0 0.5 0.04 0.5 1.12324
6 3.0 3.0 0.5 0.04 0.5 1.11996
7 3.0 2.0 0.5 0.04 0.5 1.12324
8 3.0 2.0 5.0 0.04 0.5 2.60881
9 3.0 2.0 10.0 0.04 0.5 3.52950
10 3.0 2.0 0.5 −0.04 0.5 1.12154
11 3.0 2.0 0.5 0.0 0.5 1.12260
12 3.0 2.0 0.5 0.04 0.5 1.12324
13 3.0 2.0 0.5 0.04 0.1 1.14178
14 3.0 2.0 0.5 0.04 0.5 1.12324
15 3.0 2.0 0.5 0.04 1.0 1.10770

Table 4.5.3 Numerical values of the rate of Mass Transfer (Sh)

Sl. No. Sc Kc Sh
1 0.22 0.04 0.254568
2 0.60 0.04 0.637639
3 0.78 0.04 0.818135
4 0.22 −0.04 0.167446
5 0.22 0.0 0.220000
6 0.22 0.04 0.254568
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Chapter 5

Conclusion

In the present research work, we have studied the effects of Hall current, chemical

reaction and radiation on MHD free convection flow through a vertical plate

embedded in porous medium. The results are given graphically to illustrate the

variation of velocity, temperature and concentration with different parameters. Also

the Nusselt number, Sherwood number and skin-friction are presented in tables. From

the analysis of the study the following conclusions are made:

1. The velocity profiles increase with the increase of Hall parameter (m),

permeability parameter (k), Grashof number (Gr), modified Grashof number

(Gm). On the other hand, it decrease with the increase of Magnetic parameter

(M), Chemical reaction parameter (Kc), Radiation parameter (F), Schmidt

number (Sc), Prandtl number (Pr).

2. The temperature distributions decrease with the increase of Radiation

parameter (F) and Prandtl number (Pr).

3. The concentration distributions decrease with the increase of Chemical

reaction parameter (Kc) and Schmidt number (Sc).

4. From the comparison of velocity profiles in magnetic field and without

magnetic field for different parameters we have concluded that the velocity

without magnetic field is more than the velocity in magnetic field. Moreover

there is a exception, without magnetic field the velocity graphs coincide for

different values of Hall parameter (m).

5. The skin friction ( ) increases with the increase of Hall parameter (m) and

permeability parameter (k) whereas it decreases with the increase of Magnetic

parameter (M), radiation parameter (F) and chemical reaction parameter (Kc).
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6. The heat transfer rate expressed in terms of the Nusselt number(Nu) increases

with the increase of Magnetic parameter (M), Radiation parameter (F) and

Chemical reaction parameter (Kc) and decreases with the increase of Hall

parameter (m) and permeability parameter (k).

7. The mass transfer rate expressed in terms of Sherwood number (Sh) increases

with the increase of Schmidt number (Sc) and chemical reaction parameter

(Kc).
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